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NOTATION

C Chord of control plane section WY

Lift coefficient of control plane section v

[
2

N
(¢}

D Diameter of the submerged body $\
E Exponential Integral Sy

F Axial Force N

1
-

F, Vertical force
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Non-dimensionalized axial force

<
N

=
3%

N
e

R

]
N
%

* f
Y
Py

d
4&5

Non-dimensionalized vertical force
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Fp = 7%f Froude number of the submzrsible
7%6 Froude number of the control plane section

>
-
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g Gravitational accelerat .on

G Three-dimensional Green function

02 Two-dimensional Green function

h Depth to the axis of revolution of the submerged body

hl Depth of submergence to control plane section at quarter chord
h2 Depth of submergence to control plane section at mid chord

i = /?:T; Imaginary Unit

L Length of the submersible

My Moment about the oy-axis
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H; =- E‘;-L—:, Non-dimensionalized moment about the oy-axis
2
»>
n Unit vector of the body surface drawn into the fluid
P Pressure .
fd Position vector of the center of gravity
U Speed
o] Water density
a Angle of attack of the control plane section
e Pitch angle of the bare hull
r Vortex strength
g Source or sink strength
L Three-dimensional velocity potential
¢ Two-disensional velocity potential
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ABSTRACT

-

The forces and moments acting on a
submersible are computed when it is
beneath the free surface or near a wall.
The method used in this report is based
on potential theory. In the computation
of forces and moments on the hull, a
three-dimensional method is applied. The
free surface condition is linearized and
the body boundary condition 18 exact.
The body surface is discretized with
surface elements and the singularity of
source and sink is distributed on them.
The strengths of the unkown sources and
sinks are determined through the body
boundary condition. A two-dimensional
method 1is applied o compute forces and
moments of the,controi surfaces. The
boundary conditions are 'same as those for
three~dimensional case. Computed forces
and moments of the control planes are
added to those of the bare hull. To
include the interference effect of the
hull on the control planes, the flow
velocity at each control plane is
computed with existence of the hull,
There are some discrepancles between
computed results and experimental data
because of the effect of viscosity. The
overall trends in the computed results
are same as those of the experiments. -

ADMINISTRATIVE INFORMATION

The work described below was performed for the Naval Sea System Command
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INTRODUCTION

There is a need to develop an analytical method to compute the forces and
moments acting on a submersible when it 1s beneath the free surface or near a
wall. The methodologies presently available to compute these hydrodynamic
forces and moments are limited in application. Pondl* computed the moments
developed on a Rankine ovoid by using the method of axial distribution of
sources and sinks. McCreight2 improved the method used by Pond by distributing
the dipoles and computed the vertical force. Their results are in good agreement
with the experimental data. However, the methods used by Pond and McCreight are
valid only for zero pitch angle.

The present method computes the vertical and longitudinal forces and pitch
moment acting on a submersible with and without control planes when the
submersible moves beneath the free surface or near a wall. This method is more
accurate mathematically than that of Pondl. Furthermore, the effect of pitch
angle 1s incorporated in the computation. For the computation of forces and
moment acting on the bare hull, the so—called panel method is applied. The body
surface 18 discretized with many quadrilateral planes, and sources and sinks are
distributed on these surface elements. This method can be applied to a
submerged body of arbitrary shape. To compute the forces and moment of the
control planes, the method developed by Glesing and Smith3 is used.
Two-dimensional sources and sinks are distr{buted around the sections of a
control plane, and a vortex located in the middle of each section 1s introduced
to compute 1ift force. The inlet velocity to the control planes is computed at
the tips of the sections of the control plane to include the interaction effort

between the bare hull and control planes.

*References are given on page 45.
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VELOCITY POTENTIAL

HULL

The coordinate system, oxyz, moves at a speed U, which is the mean forward
speed of the submersible along the positive ox-axis (see Figure 1). The posi-
tive oz-axis 1s always directed vertically upwards. The origin 0 is located

above the center of gravity of the submersible. The oxy-plane is the plane of

the undisturbed free surface.

We assume initially that the submersible and coordinate system are sta-
tionary and that the fluid around the submersible moves toward the negative ox-
axis with uniform speed U. Then, the total velocity potential for the bare hull
can be expressed by

O(x,y,z) = -Ux + ¢(x,y,2) (1)

where ¢ is disturbance velocity potential due to the submersible. The distur-

bance velocity potential satisfies the following conditions:

l. Laplace equation in the fluid domain

vt~ t——3=0 (2)

2. The linearized free-surface condition

2%, 3¢

o 0 (3)
dx 0z

3. The body boundary condition

2 . Un (4)
on 1
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4, The radiation condition: the disturbance vanishes sufficiently fast
far ahead of the ship.

- 2 2 2
m R(Qx + oy + oz) =0 (5)

x>

T (x2 . yz)UQ
S. The bottom condition: the normal velocity at the bottom is zero.
oz(x,y,z) = 0 as z » - (6)
In equation (3), the constant is given as

kO -.g.z (7)
U

and in Equation (4), the unit vector which is oriented normal to the fluid is

given by

ES
(nl, Ny, n3) a
(8)
> >
(na, ng» n6) = rG X n

ES
where e is the position vector of the center of gravity.

L
The solution of Equation (2) is given by Brard 1in an integral form as

8(x,y,2) = = =[] G(P,Q)s(Q)dS(Q) (9)
4n S

where P(x,y,z) is the field point, Q(x,,¥o»2o) the source point, S the wetted
surface of the body, o the unknown strength of sources and sinks distributed on
the body surface, and G is the Green function which {s given by Wehausen and

5
Laitone as




?
lf.
g
2
T -(z+zo)u {wu Ik
6r,Q) =L -2-2] sec’0 do | —————2-du (10)
] © = © u - kysec 8 s
‘.
)
s
where ‘rt
2 2 2 2 :
r o= (x - x5) +t(y -y,) +(z - zp) () N
h
2 2 2 z R
r1 =(x = x5)" +(y =yg) + (z + z5) (12) K
and "
® = (x ~ x5) cosd + (y - y,) sinb (13) :j
.
Only the real part of Equation (10) is used in later computation. é
The strength of the sources and sinks, o, in Equation (9) can be found by ::
substitution of Equation (9) into Equation (4) to obtaln '%
12 3
= 3n ] 6(P,Q)o(Q)ds(Q) = -Un, (14) -
S 2y
s
3
‘e
The solutlon of Equation (14) 1is only feasible with the help of a numerical -
procedure which will be given later.
The force acting on the body is expressed as ':
: §=—_(f pE ds (15) :
S -
7
where p Is the pressure around the body and is linearized from Bernoulli's g}
“
equation as Y
~
5 ~
..‘

’
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P=prP U é

where p is the density of the fluid.

CONTROL PLANE

(16)

The velocity potential for the control plane, whose coordinate system is p
shown in Figure 2, 1s expressed in the two-dimensional domain as 3
b(x,z) = -Ux + ¢(x,z) (17) o
.
where ¢ 18 the disturbance velocity potential due to a section of the control %
plane. This disturbance potential satisfies the following conditions.
1. Laplace equation in the fluid domain -
’l
2% . 3° ;
_;;z + 29 Yao (18)
3x dz .
2. The linearized free-surface conditfon ::
62¢ d )
A3x dz o
R
;.
3. The body boundary condition =
X
3¢ ~,
— = Un (20)
On 1 )
N,
- l‘
4, Kutta condition: the velocities at the trailing edge elements, one at }
' .
the top of the surface and one at the bottom, are equal. .

In addition, the disturbance potentfal should satisfy radiation and bottom

conditions similar to Equations (5) and (6).
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3
The solution of Equation (18) is given by Giesing and Smith . The velocity
potential function {s divided into three parts as

$(x,z) = ¢ + r(¢2 + ¢3). (21)

The velocity potential ¢y i8 due to sources and sinks which are distributed on
each section of the control plane, ¢2 is the velocity potential due to a vortex
of unit strength which is located at the inside of a section. The vortex is
introduced to calculate the 1lift force around the section. ¢3, the last term of
Equation (21) is the velocity potential due to sources and sinks of unit
strength distributed on the section. This velocity potential cancels the normal
velocity generated by bye If we substitute Equation (21) into Equation (20),

the following conditions are given

3¢
._1_ = Unl (22)
dn
and
d3do b¢3
dn . ®n (23)
These three velocity potentials are expressed as

1

¢ (P) =5

. (f: 0,(a)G,(p,q)d1(q) for {=1 and 3 (24)

and
$o(P) = Ref % In[x~a + 1(z-b)] -% In [(x~a) + 1(z+b)] ~
3
o ~ik[x-a + 1(z+b)] i
~2pv [T & dk + 2nt e tkolx-a + 1(z+D) ] A
0o k -k, N
]
S

Vea”

‘v s e SIERY “e"»”
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where o3 18 the two~dimensional strength of sources and sinks, (a,b) the
location of the vortex, q(x,,2,) a two-dimensional source point, and G, is the

two-dimensional Green function given by Wehausen and Laitone5 as

G,(p,q) = Re {1n [x-xo + 1(2-20) ] + In[x-xo + 1(z+20) ]
(26)

e-ik[x-xo + 1(z+z,) | dk - 27l e—iko[x-xo + 1(z+z,) ]
K - Kg

@™

+ 2pv f
o

}

In Equations (25) and (26), Re denotes the real part of a complex quantity and
pv the principal-value integral. The vortex strength I' in Equation (21) will be
deternined with the Kutta condition. The pressure around each section of the
control plane can be obtained from Equation (16) by substituting b, for °x' The

force and moment acting on the section can be computed with an equation of the

same form as Equation (15).

By substituting Equation (24) into eirher Equation (22) or Equation (23),

the unknown strength of the sources and sinks for the two-dimensional case can :.
be determined from the following equation :
-’.

1 3 X

— = ] 01(q)G,(p,q)d1(q) = Un, for { =1 (27) N

2t dn ¢ ~

"..- l‘. »

3‘?3
= -~ —= for 1=3,
an

. Ay

When the submersible {s moving near a wall, the linear free-surface

conditions, Equations (3) and (19) are no longer valid. Instead, we should use

the wall boundary conditions given by

.."‘1,
s

.I
ats

3% . 0
dz

at z = 0 (28)

P A
[t R

and

]

i
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3¢ = ( at z =0 (29)
oz

All other boundary conditions are the same as those described in Equations (2),
(4) - (6), (18) and (20). The solutions in this case have the same form as
Equations (9) and (21), with different Green functions. The Green functions can
be expressed by application of the method of images (see Reference 6) as

1

C(BQ) =+ (30)

for the case of bare hull and

Gz(p,q) = Re{]_n[x-xo + 1(z—zo)] + 1n [x—xo + 1(z+zo)]} (31)

for the case of control plane. The velocity potential due to a unit vortex

located at (a,b) should be

¥,(p) = Re{%;t- In[(x-a) + 1(z-b)] - -;—; In [(x-a) + i(z+b)]} (32)

To find the velocity potentials for the wall condition, Equations (10), (25) and
(26) should be replaced by Equations (30), (32) and (31), respectively.

3
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b
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NUMERICAL PROCEDURE f

n

I

r

To determine the unknown strength of the sources and sinks in Equation (14), :

we first discretize the wetted surface of the body S with many quadrilateral ;
]

elements. Figure 3 shows the discretized surfaces of a spheroid. Furthermore, 9
]

we assume that the unknown strength of the sources and sinks, o0(Q), 1s constant

]

on each surface element. Then Equation (14) can be written as follows A
Nt

1 g ()6_ ) AS; = -U for L =1, 2, ..., N (33) :"
w351 Q) 55 6(P1,Qy) 85y 11 e ' N

v

-

S

Once the derivations of the Green function, G, are evaluated numerically, w
Equation (33) can easily be solved for oj. The numerical evaluation of the X
Green function and its derivatives is the most difficult part, and consumes a ::?
S

lot of computer time when running the program. h;
L
The normal derivative of the Green function in Equation (33) can be Zf'
expressed as ';
¥

1Y

s

%26, 86, L2, (34)

on Ox oy dz ]

Xy

The task is to find three derivatives of the Green function. To do this, we ﬁ‘
Y

first derive the Green function suitable to numerical evaluation. The Green -
function, Equation (10), can be rewritten as i:
t\
o -zu, 1d,u 1d_u) 0

(et +e -~ '

du - 4

u - Uo . ..\-

o
(L) o]
\..

b

\-

du} (35) t}

."_\
s
:-;21
1
10 3




where

154]
]

(x=Xo) cos 6 + (y-y,) sin 6 = &

@_ = (x-xqo) cos 8 = (y-y,) sin 0
(36)

N
]

Iz + zol

2
uo k, sec 6

R AR

The notation under two of the integrals in Equation (35), namely, Ll or Lz.

represents the integral paths shown in Figure 4. To derive the derivatives of

7
the first two terms of Equation (35), the method which Hess and Smith developed

.

8
for unbounded flow can be used. Hong and Paulling have applied this method for
the computation of motions of a body in waves, and their paper can be examined
for the details. Since Reference 8 can be examined for these details, we will

present here the derivation of the last two terms of Equation (35).

ot -

We write Equation (35) as follows

1 1
: G = c rl+ G3 (37)
3]
y Ll ~ ~
o _—zZu, flwgu iw_u
G3---1-fuod9{fe (e te ) 4
n u-u

o o o
: (Ll) (38)
K
¢ @ ~ ~
s -zZu, =iwgu {w_u
' . e (e e )
f + g U - ug du}

We now change the variable for the integral path, Ll' as follows:

" e e e A

v-(u-uo)(;-im) with @ = @y or ®-;

11
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then, the integral path becomes that shown in Figure 5. The integral path, Ly,

is now transferred onto the path C, in Figure 5 as

* <zZu _iw_u

— ~ w
[ =—2——du = eVo(z = 1w) [ &£— av (39) .
o u = uy c1 v
(Ly) :

The integral over C, can be easily evaluated with the method of residue as

(]
f e e 2xi) W <
—_—dv = —_— dv+{"ﬂ} w o (40)
¢ Vv v 0 "&>o0
UO(Z - ia)
with the introduction of the exponential integral
(- -]
—v ~
iv__ dv = El[-uo(z - iw)], (41)

-uy(z - 1®)

the integral over Cl becomes

e‘v - ~ -2=ni
Ef:_v——dv = El['“o(z = 1‘*’)] + { 0 }’

1




By substituting Equation (37) into Equation (33), the integral over L1 is given

by -
e-.;“(e1$+u + eig'“) -u,(z =~ 10,) -~ 2ni
£ T du = ¢ {El[-uo(z - twy)] - 0 }
(Ly)
»
— ~ ~ ~ r
+ e-uo(z - {w.) {El['“o(;-' 5] + {211}’ Wy, W- < 0 (43) r

0 Wy, Wo > 0

For the integral path, L2, we change the variable as follows:

v = (u=-uy) (z+ 10) with W= 0, or W_;

then, the new integral path is given in Pigure 6. With this new variable, the

integral path, Lo is8 now C Employing the same procedure as used previously

l.
to evaluate the integral over L

»_ 5 5 8 2=

1’ the integral over L2 becomes

» ~Tu i;+u -1@_u - ~ N
e (e + e ) o JUolz + 1wy) - ~ 2ni i

£ "= ug du = e {El[-uo(z + fwy)] + 0 }
(Lz) 1

P T 1“"){81[—\10(_{ ¢ 1)) + 2y e 0o <o (44 3

0 Wy, W_>o0

oy
.-- - - - - - - 1 % - - - » L] o, o " -
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Substitution of Equation (43) and (44) into Equation (38), allows us finally to

express G3 in a convenient form for numerical evaluation as

n/2

ug d8 {e-uo(z - 1w+){El[_uo(; -150] - 21(1}

[
J 0]
0

G -—.1_
b4

—u,(z - lw- -~ 2ni
+e uo(z w-) {El[uo(z - 1w_)] ~ “* }
0
(45)
~u (Z + 1o - o~ 2
+ e Uo(Z w4) {El['“o(z 1]+ ni}
0
e o2 H 10 (g [y G e 1l] + FHY, O un <O
0 wy, w- >0
If we let
—uo(; - 1wy) - ~
uge E]_[-uo(z - 1w4)] = R + 41
uge UolZ T 198 L gy g (46)
~u,(z - fw- - ~ - -
use © ) El[uo(z - 1w-)] = R + il

— ~

“olz = 1w-) Loy g5

14

LR L] -

T N e o e A i

P ,-_/\-'%.-\.r\.- . -.'..r

3 AL )

.- Ty
l‘ ° .I
At

4t TS S S A s S T

-

- ‘-‘ . -l- ',— ‘I' '\.

e

SRR

(4
4 ]

. -
e '

.
fy '3 's

-
r.
r

-

ntat e d
- L)



we can express G3 as

n/2
Gy = ‘% I[R + (23)8 +R +~(23)S]d§', wes w- <0 (47)
0 64., m- >0

The derivatives of G4 can be easily expressed from Equation (38)

603
—= = 1 u cos® G3 (48)
0x

663 ~
—= =1 u sind G, sign(w) (49)
oy 3

363 _ | o

50)
Bz 3 (

where

€
]
£
+

sign (Z) =1 for
~ (51)

€2
L}

€

I

- -1

C RN A \“-‘ CR VAL
N :! "'n‘..‘n Cal Wi :\‘.\\{\.{h \‘j




vatives of G3 can be expressed in final form as

~/2
3G ~
3.2 up cosd {- Ot -1+ (M
0x n -2 ~2 0
0 z, + W
I w - 2, =
+ - -T+ (“") Clae
2 °
?{2
0G ~
3. —~12—t- J u, sind {- s -1+ (Zn)C
dy 2, ~2
0 + Y
w_ = 2n, =
e +T - (°") Clde
z, + w_
n/2
a(;3 2 r Yy 2
— ==X u z n
5z - J o | S5t R Cps
0 z w
+

z - 2, =
+ + R+ (7)) slde
-2 + 52 0
z, B
16
T Iy O T I R S S o T
"“n’llt'l.as!.o SO AN A.l ONI t‘ e ;(’ s TRy POUPANN

.
.- ,..f- ‘_‘_.’,’-.-.

With substitution of Equation (45) into Equations (48), (49) and (50), the deri-

(52)

(53)

(54)
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In these equations, the upper value is taken when @, or &_1s larger than and
equal to 0 and the lower value is taken when G* or B 1is negative. Inglis and
Price9 have derived the Green function for a translating and pulsating source

sfrilar to G3 with the change of variable and with the change of integral path,

‘ ) When the argument, -uo(?+16) or -uo(;-ia) is small, the exponential integral

can be expressed in a series form (see Reference l0) as

-1)0
Bi(2) = -y - 1nz - § D2, | arg 2| < x  (55)
! n=] nn!

) where z is any complex number and y = 0.5772157 18 Euler's constant. When the
argument becomes very large, the exponential integral is evaluated by the method
of Todd.11 For a large complex number z = x + 1y, the exponential integral

multiplied with exponential funct'on 1is expressed as

z
e El(z) - I1 - 112 (56)
where
1, = e Xxtu du (57)
2 2
i (x +u) +y
0
; a
: I, - e’ L —— du (58)
| (x +u) +y
0
4
; 17
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For the evaluation of I1 and 12’ we use the following approximation y
® :
[ = J et f(t) de =) xi“) f(xin)) (59) :
0 .
;
(n) (n) 7
where Xy are the zeros of the Laguerre polynomial and ki are the
corresponding Christoffel numbers. In this report, n is taken as 5, and xi(s)
and Xi(s) are given in Table I. 0.
Table 1: :
Zeros of Laguerre Polynomials and 1
-
Christoffel Numbers -
-
xi(s) X (5) iﬂ
{ o
0.2635603 0.5217556 i
1.4134031 1.3986668 ::
3.5964258 0.0759424 X
7.0858100 0.0036117 [
.\
12.6408008 0.0000234 =3
The exponential functions in Equations (47), (52), (53) and (54) are highly ;:
oscillatory when the real part of the complex argument is small and the imagi- @
nary part is large. One of complex arguments in Equation (46) can be expressed K
L)
as -
0
]
—u (7 - 1ay) = - ko sec? 8 + [7 + 1R cos(8 + B)) (60) B
t.“
}‘l
-
e L s e e e I A e I T e 1

) - - . -
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When 92 - 6l is small, the integral between 9l and 92 can be approximated as

92 .92
fuo(C + iS)de = fko sec26 . exp{-k0 secze[i + 1R cos(8 + B)]} (61)
% %
9,

= | (A + iB) exp[1(ab + b)]de

where A, B, a, and b are constant between 61 and 92. The last e»pression in
Equation (61) can be analytically evaluated. Once the normal derivative of the
Green function, which contains Equation (61), is numerically evaluated, Equation
(33) can be expressed as a system of linear equations and oj can be solved by

the method of Gauss elimination.

For the computation of forces and moment of a control plane, we discretize
each section of the control plane with straight segments as shown in Figure 7.
The unknown strength of the two-dimensional sources and sinks on each segment Is
assumed to be constant. The subscript { for 9y in Equation (27) will be dropped

from now on to avoild confusion assoclated with that of segments. o represents

19
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each of o, and o4 in the following equations. Equation (27) can be approximated

M
1 )
sj for { = 1,2,...,M

the normal derivative of the two~dimensional Green function is

(63)

We use the complex variables in derivation of derivatives of the Green function

suitsble for numerical evaluation. If we introduce the following complex

variables
C=x+ 12 and C, = % + iz,, (64)
Go(p,q) = Re{F(C,Cq)} (65)
where
F(C,Cq) = 1n(C = Cu) + 1n(C - Cp) + pv J" e—-i—t—(*f—;—o_—é—o’-)- dk (66)

0

- 2xt & Hko(C = Co)

In Equation (66),'6o is the complex conjugate of CO. Then, the two derivatives

in Equation (63) can be expressed as functions of F

362 dF
3 - Relgc] (67
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acz

3z = - Ialsc! (68)

The derivative of Equation (66) with respect to C is

-1k(C - Cg) (69)
dF l_ . --j"'pv k e dk
3¢ Cc-C C=Co k - kg
0

-1 k,(C - C,)
- 2n k, © ° °

Integrating the last equation with respect to sj (qj) we obtain

dF
£ 'gEde(qj) = ~(cos ay - { sin aj)[ln Tyor * 19j+1 - 1ln Ty " 19j] ;
- (cos o, + 1 sin aj)[ln ?j+l + @JH - 1n "r'j - ﬁj]
+ z )
_-I-(cos ej + 1 sina )p k-k A [cos k(x-onH)
k(z + z4 )
. - 1 sin k(x—xojﬂ -pvJ’k 3 [cos k(x-xoj)
0
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-1 sin k(x - xoj)]|

(z +

k
+ 2xi (cos ay + 1 sin GJ){C ° zojﬂ)[c:os ko(x =

x°j+l)
- 1 sin ky(x - x°j+l)]

k. (z +
o * 20540 cos ky(x - %5y) = 1 8 ko(x = x0,) ]} (70)

the new variable and notation are given in Figure 8. The details for derivation

of Equation (70) are given by References 3 and 12,

The numerical procedure for determining oy and T i3 as follows: Pirst, we
evaluate the normal derivative of the two-dimensional Green function which
enables us to solve Equation (62) for oy» Next, we calculate the normal
velocities at segments due to a unit vortex located at the center of the
section. To eliminate these normal velocities, we distribute o4 at each segment
of the section and determine o with Equation (23). We finally solve for the
vortex strength I' in Equation (21) using the Kutta condition.

The computational procedure of forces and moments is as follows: The forces
and moments of the bare hull are first computed. This means it is assumed no
interference of control planes to the bare hull. To include the interference
effect of the bare hull to the control planes, the flow velocity, U, in Figure 2
is different from U in Figure l. A control plane is cut at three different
spanwise locations. At the leading edge of each location (or section), U is
computed. This velocity is different from the steady forward speed, U, in

Figure 1. Two-dimensional forces and moments are computed at each section; and

these are summed along the spanwise direction. Finally, these summed forces and

moments are added to those of the bare hull.,
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NUMERICAL RESULTS

In this gsection we will calculate the forces and moments acting on a submer-
sible moving under the free surface or under fce. Numerical results based on
the present method will be compared with results obtained from earlier theoreti-
cal methods and experiments. First, forces acting independently on the bare
hull and control plane will be compared; then, results for the combined hull and

plane will be compared.

Figure 9 shows the forces and moments on a Rankine ovoid having a length of
4 ft (1.22m). The ratio of length to diameter (D) is 10.5. The Rankine ovoid
is created by distributing sources and sinks along a line which is assumed to be
in a uniform stream in an unbounded fluid (see Reference 12). The computed ver-

tical forces (F') are generally somewhat larger than the experimental data for
z

smaller submergence (h) and smaller for larger submergence. The computed
moments (M') are generally smaller than the experimental data for all sub-

y
mergences when the Froude number 18 larger than 0.5. However, the overall trend

of the computed results 1is similar to that of the measurements. Results calcu-

lated by the present method are in good agreement with values obtained from pre~
vious analytical methods. Figure 10 shows the same results plotted as a
function of submergence. As the submergence becomes larger than three times the

diameter, the force and moments decrease rapidly for all Froude numbers.

Figures 11, 12 and 13 show similar data for a spheroid whose ratio of length
to diameter is 7. The findings here are somewhat different from those discussed
previously for the Rankine ovold (see Figure 9). When pitch angle {s zero (see
Figure 11) the experimental data for the spheroid extracted from Reference 13
are larger than the computed values at Froude numbers less than 0.5. The
agreement between computation and experiment is generally good when the

submergence {s equal to or larger than the diameter: when the ratio of

submergence to diameter {s 0.75, there is substantial difference. When the
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pitch angle is 2.5 degrees (bow up), the experimental results are larger than
those from computation for essentially all Froude numbers (see Figure 12). As
shown in Figure 13, negative pitch angle of 2.5 degrees (bow down), the
prediction and measurement of vertical force are, for the most part, in better
agreement than those for zero or positive pitch angle. The computed moments are
larger than the experimental results for all submergences and Froude numbers.
These discrepancies for non-zero pitch angle might be caused by the viscosity of

the fluid and also vortex shedding from the body or the cross flow effect.

Figure 14 shows the results of 11ft for a hydrofoll whose section has the
shape of NACA 4412, The results shown in this figure are those for a two-
dimensional section. The agreement between computation based on the present
method and experimental data from Reference 14 is good when the angle of attack
18 smaller than 4 degrees (see bottom figure). As the angle of attack
increases, the computed results become larger than the measurements particularly
at the lower Froude number. It is of interest to observe that for this sub-
mergence the 1lift coefficient at the higher Froude number is smaller than that
at the lower Froude number. When the angle of attack is 10 degrees and the
Froude number is 0.922 (see top figure) there is substantial discrepancy between
the computed and experimental results as the submergence increases. The results
computed by the present method are further compared with the method developed by
Wadlin and Christopher in Reference 17, Equation (15). The calculations were
made for an aspect ratio of 10 to stimulate a two-dimensional 11ift coefficient.
It should be pointed out that Equation (15) of Reference 17 is strictly
applicable for aspect ratio of 0.125 to 10. Their results are almost half of
those by the present method. Compared with the experiment, the results of

Wadlin and Christopher show better agreement than those by the present method.

Figure 15 shows the results of 1lift for a hydrofoil whose section has the
shape of NACA 64A010. The aspect ratio of this hydrofoil is 6. As shown in the
bottom figure, for small angle of attack there are small differences between
computation and the experimental results taken from Reference 15. The differen-

ces Increase as the angle of attack increases. The reason for these discrepancies
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may be that first, the effect of viscosity is not included in the computation,

and second, the test was done with turbulence stimulation. The top figure
indicates that for an angle of attack of 4 degrees, the computed 1lift
coefficient i8 about twice the measured value when the submergence is larye.
When the ratio of submergence to chord is smaller than 0.5, the agreement
between computation and experiment 18 good. For small submergences, the 1lift is
more affected by the free surface than viscosity, and when the submergence is
large, the reverse is true. On the other hand, compared with the experiment,
the results of Wadlin and Christopher show better agreement than those by the

present method when the submergence ratio {s larger than 2.

When the location of the sail plane or stern plane of a submersible is at a

depth of two or three times of chord, a better 1ift computation can be expected

with the method developed in Reference 17.

Figure 16 shows forces and moment for Model 4621 with and without stern-
planes at deep submergence. The computed and experimental axial forces are
fairly steady at different trim angles. The vertical forces for the bare hull
are computed to be significantly less than those of experiment. However, the
results of vertical forces with sternplane agree very well with those of experi-
ment except at a=12°. The reason for the good agreement for the case with
sternplane is that the vertical force (in this case 1ift) of the control plane
alone is over-estimated at deep submergence as shown in Figures 14 and 15; and
this over-estimation is compensated with the under-estimation of the vertical

forces of base hull. The moments are computed to be larger than the experimen-

tal values.

Figure 17 shows the results of vertical force of a spheroid with L/D=7 near
a wall. The computed results are compared with the results of Newman.l
Newman's method was developed using slender body theory and with the assumption
of L/D >> 1 and h/D << 1. The vertical forces computed by the present method
are smaller than those computed by Newman. It is unkown which method is more

accurate.,
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CONCLUSIONS AND RECOMMENDATIONS

The forces and moment acting on a submersible moving beneath the free sur-
face or near a wall with a pitch angle for the bare hull or a control surface
deflection have been computed using potential flow theory. There is good
agreement between calculation and experiment for the bare hull when the ratio of
submergence depth to the diameter is larger than 1 and the pitch angle {s zero.
For the control planes alone, the good agreement between calculation and
experiment 1s achieved when the ratio of submergence depth to chord 1is small.
When this ratio is large, the force due to viscosity is dominant and the present

method generally computes forces larger than those of experiment.
From the present study, the following conclusions may be drawn:

1. The numerical evaluation of the Green function needs to be improved
when the ratio of submergence depth to diameter is smaller than 1.0.
Near the free surface, the Green function has oscillatory behavior and

the exponential function decays slowly.

2. For nonzero angle of attack, there 1Is a cross flow or vortex shedding.
The effect of cross flow or vortex shedding should be included in the

computation with the help of viscous flow analysis.

3. When the ratio of submergence depth to the mean chord of a control
plane 1s large, the 11ft 1s dominated by the contribution of viscosity.
The viscous effect on the 1ift should be {ncorporated in the future

computation.

4, To improve the results of potential theory, an empirical or analytical

approach should be developed with inclusion of viscous effect.
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Figure 6 - Change of Integral Path for L2
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Figure 8 - Notations for Equation (70)
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Figure 9 - Force and Moment on a Rankine Ovoid with 1./D = 10.5
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Figure 11 - Force and Moment on a Spheroid with L/D = 7
. when 8 = 0°
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Figure 13 - Force and Moment on a Spheroid with L/D = 7
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when 8 = -2,5° (Bow down)
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